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Abstract—The viscoelastic behavior of simply-supported, cross-ply and angle-ply laminated plates
with a physical aging phenomenon is examined. The laminates considered are under uniaxial in-
plane compression and have various amplitudes of initial imperfection. The analysis is based on a
geometrically nonlinear viscoelastic formulation. The effective time theory is employed to construct
the stress—strain relations. By assuming every component of relaxation moduli in each lamina has
the same aging shift rate, the analysis is conducted on the effective time scale. The stress function is
obtained by solving the compatibility equation by the use of the Laplace transform and a numerical
integration scheme. Deflection is calculated from the moment equation by the Galerkin method in
conjunction with the numerical integration. Numerical results for deflection history and edge
shortening for the glass-reinforced vinyl ester laminates are presented. The effects of the physical
aging, the pre-loading aging time, the amplitude of imperfection, the magnitude of loading, and the
coupling relaxation moduli on the creep responses are illustrated in the numerical examples. Solu-
tions based on the quasi-elastic approach are also presented for comparison. © 1998 Elsevier
Science Ltd.

INTRODUCTION

Although it is well-known that the polymer matrix composite exhibits a viscoelastic
behavior, the creep buckling and large creep deflection of fiber-reinforced plastic (FRP)
laminates receive little attention. Among a few works on this subject, Wilson and Vinson
(1984) investigated the buckling load reduction of the graphite-reinforced epoxy. Kim and
Hong (1988) examined the viscoelastic buckling load of sandwich plates with cross-ply
faces. Both works are based on the linear buckling analysis. More recently, Huang (1994)
has studied the viscoelastic buckling and postbuckling of circular cylindrical laminated
shells. These works were conducted within the framework of the quasi-elastic analysis; i.e.
the viscoelastic responses are obtained by direct substitution of time-varying properties
into the elastic formulations of the problem.

The quasi-elastic approximation ignoring the history of stress resultant variation in a
plate is applicable to the case when the internal forces and moments are nearly timewise
constant, for example, a plate under a constant transverse loading. However, for the case
of a compressed plate, the deflection (or curvature) is induced by the existence of the bending
moment, which in turn depends mainly on the magnitude of the deflection. Therefore, the
bending moment is time-varying and may change rapidly in the creep process, although the
compressive forces along the edges are held constant. Thus, the applicability of the much
simpler quasi-elastic approach to the plates under compression appears to be questionable.

Another shortcoming in the above-mentioned works is that the viscoelastic buckling
analysis is conducted without considering the effect of initial imperfections. The creep
behavior of a viscoelastic plate under compression is characterized by the growth of the
initial deflection. It is known that the amplitude of imperfection will affect the time at which
the deflection grows rapidly (Boley and Weiner, 1985). Theoretically, a geometrically perfect
viscoelastic plate will never deflect if the applied compressive loading does not exceed the
instantaneous buckling load.

1515



1516 Nan-Nong Huang

Shalev and Aboudi (1991) had used the viscoelastic approach to investigate the post-
buckling creep behaviors for geometrically perfect, symmetric cross-ply laminates. Tri-
gonomeric functions are employed to represent the displacements, and the approximate
solutions are obtained using the Galerkin procedure. Shalev and Aboudi did not consider
the cases when the applied load is smaller than the instantaneous buckling load, since the
implication of the geometric imperfection is not included in their formulations. Recently,
Marques and Creus (1994) have used the viscoelastic approach in conjunction with the
finite element method to study the responses of laminated plates and shells to the transverse
mechanical loadings and hygrothermal loads. The effect of the imperfection on the creep
responses of laminated plates to the in-plane compression are not reported. Therefore, to
further clarify the visoelastic behaviors of the FRP laminates under compression, the creep
responses of simply-supported FRP laminates having various degrees of imperfections are
examined based on the geometrically nonlinear viscoelastic analysis in this study. The
laminates considered are symmetric cross-ply and antisymmetric angle-ply laminates.

In addition to the viscoelastic property, the polymeric materials and polymeric com-
posites exhibit a physical aging phenomenon when placed in an environment with tem-
perature between the glass transition temperature and the temperature of the highest
secondary transition (Struik, 1978). The influence of physical aging effect on the viscoelastic
behavior of polymer matrix composites has been studied extensively in recent years.
However, most investigations so far have been devoted to the modeling of viscoelastic
properties, which includes the construction of momentary (short-term) master curve for
creep compliances and the examination of the validity of the effective time theory. To the
author’s best knowledge, the analysis of creep responses of laminate structures with physical
aging property has not been reported. In this paper, the influence of the physical aging
effect on the structural responses is illustrated by examining the creep behaviors of com-
posite plates with imperfections under in-plane compression.

Since the material properties change due to aging, the Boltzmann’s superposition
principle cannot be directly applied to the viscoelastic material with aging phenomenon.
The effective time theory is introduced to construct the stress—strain relation for a lamina.
The compatibility and moment equilibrium equations, expressed in the form of convolution
integrals, are employed to govern the structural responses. By applying the Laplace trans-
form to the compatbility equation, the Laplace transform of the stress function can be
obtained exactly. The stress function obtained from the inverse Laplace transform is
accomplished by the assistance of the trapezoid integration rule. The deflection parameter
is determined from the moment equation using the Galerkin technique in conjunction with
the numerical integration scheme. The creep responses of glass-reinforced bis-phenol A
vinyl ester (glass/BPA) laminates are reported. The results based on the quasi-elastic
approach are also presented and compared to the viscoelastic solutions to assess the validity
of the quasi-elastic analysis.

STRESS-STRAIN RELATION FOR A LAMINA WITH PHYSICAL AGING

The viscoelastic behavior of polymer materials is associated with the mobility of chain
segment M. Usually, the mobility diminishes with the elapsed time of aging .. According
to Struik (1978), the relation between M and ¢, is governed by

M(t) = k/(t)" (M

where k is a constant and p is called the aging shift rate.

Generally, the creep behavior of a physical aging material is described by the momen-
tary (or short-term) creep compliances, where it is assumed that no aging occurs during
creep. Suppose that the momentary creep compliance of a specially orthotropic lamina with
aging time z, are S;(1, t.) (i,j = 1,2, 6). Then, according to the time/aging-time superposition
principle, the momentary creep compliances of the same material with aging time ¢, can be
related to S,(t, 1) as
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Sij(’ﬂ té) - Slj(aij(t;ﬁ te)ts le) (19] = 1327 6) (2)

where g is called the acceleration factor, which represents the ratio of mobility cor-
responding to different values of aging time ¢, and ¢;. According to eqn (1), the acceleration
factor for each component of creep compliance is

aij([éa te) = (tc/[é)u'/ (3)

in which p,; represents the aging shift rate corresponding to each component of S;;.

The long-term creep behavior of a physical aging material is fundamentally different
from the short-term creep response to the loading ; the creep phenomenon is accompanied
by the simultaneous aging. Consider a material with aging time ¢,; in the time interval
between ¢ and 1 +d¢, the creep response is 1/a,(1,+ 1, t.) times slower than at ¢ = 0. Therefore,
the interval is equivalent to an effective time interval d4, which is given by

di;(t ) = a;(t.+¢,¢.) de.

Based on the above equation, the effective time is

;"ij([s [c) = f aif(te +T, le) dT.

0
Introducing eqn (3) and integrating the above equation yields

Ayt 1) = tein(L+1/t) if gy =1
te -
Ay(nct) = = ) =11 g # 1, @

i

Therefore, from the meaning of the effective time, the long-term creep compliance of a
lamina with aging time ¢, are

Sh(t 1) = S;(A(t, 1), t) (6, =1,2,6).

The Boltzmann’s superposition principle is applicable to the short-term viscoelastic
response of materials with physical aging. Consequently, the momentary stress—strain
relations for a specially orthotropic lamina under a state of plane stress with aging time ¢,
can be written as follows (Brinson and Gates, 1995)

e(t) = Z J‘l Si](t—r)mdr (i=1,2,6) (5a)
F=1,2.6 J —oc ot

o)=Y j Q,,(t—r)aaa’“)dr (i=1286) (5b)
= 1.2,6 J — oo T

where Q,, are the momentary reduced relaxation moduli. Functions ¢, &, S, and Q,; are
equal to zero when ¢ < (. It is noted that, to make the expression more concise, the reference
aging time 7, has been dropped from eqn (5). The same abbreviation is also applied to all
the equations appearing hereafter. Applying the Laplace transform to eqn (5) yields the
following equations in the transform variable s:

¥ SaGO0)] =dys (i.j=1,2)

k=12

géé(séﬁﬁ) = 1/s
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where 4, is the Kronecker delta, and a variable with a hat (7) represents the Laplace
transform of this variable. Taking the inverse Laplace transform of the above equations
gives the following useful expressions regarding the relations between S,(¢f) and Q,(f):

¥ U Sutt—1) 220 gy +S.k(z)Qk,(0)]—5,, (=12 (62)

k=1,2

Js“(t— %2 4 4 50 0)Qes ) = 1. (6b)

The above equations will be used later to calculate Q,(f) from S,(f) by employing the
numerical integration scheme.

It is known that, due to the change of the material property, the Boltzmann’s super-
position principle cannot be applied directly to the long-term stress—strain relation. Based
on the effective time theory, the long-term strain—stress relation for a lamina with pre-
straining aging time ¢, is as follows:

g =Y J Sy () — 2t aaéf) T (i=1,2) (7a)

i=12 J_o

es(z)=f Seehos) ~aa() 2D e (7b)

—x

For the case that the lamina whose time-dependent property in S;, and S, can be ignored
and the case that the lamina exhibits the same aging shift rate for the creep responses to
the axial loading (i.e. i, = ;2 = U32), the long-term stress—strain relations can be written
as

o= T [ 0n-ka)H2ar =12 8a)

Jj=12 Jwo

4 . 6 6
0= Quatian()=Tan() T, (&)

From some types of material systems, the aging shift rate corresponding to the axial and
shear creep responses are almost identical (Sullivan et al., 1993). By taking y,; = pes = p, the
long-term stress—strain relations (8) can be expressed as

,(,1) I= Y 0% (=126. )

j=126

o (A1) = -=12(,J QA ~ () —5

Hereafter, the asterisk (*) indicates a convolution integral, and the prime (") denotes the
derivative with respect to the effective time. It is noted that the above expression is identical
to the expression (5b) regarding the short-term stress—strain relation once the effective time
is replaced by the real time. Therefore, the analysis can be conducted on the effective time
scale. Once the problem is solved, the results are then transformed back on the real time
scale. In this study, the creep analysis of FRP structures is restricted to this type of material
system.
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Fig. 1. Laminated plate.

GOVERNING FORMULATIONS FOR A LAMINATE

Consider a composite laminate as shown in Fig. 1. The laminate under consideration
consists of N viscoelastic layers, with each layer taken to be macroscopically homogeneous
and orthotropic. Each layer is subjected to the same period of pre-loading aging, and every
component of the creep compliances has an identical aging shift rate. The edge widths of
the plate in the x- and y-directions are denoted as a and b, respectively and the thickness is
h. The plate considered, having an initial deflection w,, carries an in-plane compressive
force P along the x-direction.

According to the classical plate theory and von Karman flexible plate assumption, the
strains & and curvatures x; of the middle plane are related to the displacements by (Uemura
and Byon, 1977)

0 __ 2
6 = U +(W, ) 2+w, wo,
0 __ 2 y
g, =v,+(W,) 2+w wy,
0
ny = U,x + u,y + w,xw,y + W,xwl),y + WO,xW,y

Kyp = —2W (10)

Ky = =Wy, Ky =—W Xy

DA

where u and v are displacements of the middle plane in the x- and y-directions, respectively ;
w is the induced deflection after loading is applied.

Consider symmetric cross-ply and antisymmetric angle-ply laminates. The stress result-
ants can be related with strains and curvatures as

No= Y [4,*E)+B*]] (i=1,2,6) (11
j=1,2,6

M= 3 [B;y*Xe))+D,*k)] (i=1,2,6) (12)
Jj=1,2,6

where A,y = A, = Dg = Dy = 0and B,, = B, = By, = By = 0. For the case of symmetric
cross-ply laminates, components B,s and By also vanish. The effective relaxation moduli
A, B;and D, listed in eqns (11) and (12) are defined by

ijs

N

(Aif’ Bij’ Dii) = z ‘[(152’ Zl)(Q_ij)k dZ (l;_] = l,2a 6)

k=1

in which (Q,), are the transformed reduced relaxation moduli of the kth layer, which
can be calculated from the reduced relaxation moduli (Q,), using the tensor component
transformation. Taking the Laplace transform of eqn (11), the following equations are
obtained:
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&= 3 (la,-ij+b,-_,-;€j> (i=1,2,6) (13)
=T \S
where
[a] = [4]" (6] = —[al[B].
The quasi-static analysis is employed in this study. The in-plane gross equilibrium
equations are
N.y+Ny,=0 N, ,+N,, =0 (14)
and the out-of-plane response is governed by
Mo o+2M M, + N (WA wo) o+ 2N, (W w) o + N, (w+wo),, =0.  (15)
Let the stress function F be defined by
(16)

N.,=F,, N,=F, N,= _F»X-V'

The force resultants N,, N, and N,, thus related to the stress function F satisfy the in-plane
force equilibrium equations (14). Upon introducing the stress function and eqns (10) and

(12) into (15), the moment equation is rewritten as below
D *W e+ 2(D 12+ 2D ) W oy + Do *W,,
=3B s*u',, — Bys*uy,, — 3B ¥V, — B ¥
—2B16*(Waw /2w W) o —Bie®* (W W, +w Wwo , +Wo W)
—2By* (W w2+ W, Wo, ) oy — Bag* (W, + W Wo s +Wo W)
a7

- Eyy(w + WO),xx + 2Ex_v (W+ wO),xy - Exx(w + WO).yy = 0.
The compatibility condition for a physically possible strain state, obtained from eqn
(10), is as follows,
ag,yy + 62’.::){ - ygy,xy = (w,xy)z - W.xxw,yy + 2w.xyW0,xy - w,xxw(],yy - WO,xxW,yy' (18)
By applying the Laplace transform to the above equation and introducing eqns (13) and
(16), the compatibility equation can be expressed as
azzﬁ,xxxx +(2a,,+ a66)F,x,vyy +ai F,yyyy

= Sg[(w,xy)z —W W,y + 2w,xyw>0.xy W xxWoyy — wO,xstyy]
+ s(2b26 - b61 )W,xxxy + S(zb 16 b62)w,xyyy' (19)

Here, the symbol (#) represents the Laplace transform.
VISCOELASTIC ANALYSIS

The viscoelastic responses of simply-supported composite laminates under in-plane
compression are analyzed. The specific boundary conditions along the edges are
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b
atx=0,a:w=M,=N, =0, u=constant and N.dy = —PH(r)

0

aty=0,b:w=M,=N_,=0, v=constant and J N, dx=0 (20)

0

where H(1) is the Heaviside unit function.
The initial deflection w, and the induced deflection after loading w are expressed as

[wo, w] = [4o, A(D)] sin(at,,x) sin(f,y)

where «,, = mr/a and B, = nn/b. The deflection pattern sin{a,x) sin(f,y) is chosen to be the
same as the instantaneous buckling shape. Here, only one mode is employed to approximate
the deflection. For a plate under axial compression, a one-mode approximation generally
yields acceptable results for moderately large deflections (Timoshenko and Gere, 1961).

For the assumed deflection w and the prescribed imperfection wy, the Laplace transform
(F) of the stress function can be determined from eqn (19). By performing the inverse
Laplace transform, the stress function F is obtained as follows:

3

h - S PH
F(x,y,4) = 2 [(h11/17) cos(2B,) + P22n’ cOs(2a,, )] *(A* 424, A)' — ?Eyz

—h ¢ss*(A) cos(a,,x) cos(B,y)  (21)
where

’7=ﬁn/0‘m /IZA//I A-O=A0/h

'G(s) _ (2b16 —be2 )’ + (2bys — b1 )1
NG ‘122'+‘(26112'f‘acvs)'?z‘i"an"l4

¢55=$71‘ > G(s)

L g [t
b= (a“h) ¢ = & (h) @2

The operator (£ ~') appearing in the above formulations represents the inverse Laplace
transform. The resultant forces N,, N, and N,, can be easily determined from eqn (16) ; the
explicit expressions for the forces will not be provided here. It is not difficult to verify that
the stress function F given in eqn (21) satisfies the force boundary conditions listed in (20).

It is generally very difficult to obtain functions ¢,,, ¢, and ¢s; from eqn (22) by
performing the inverse Laplace transform. Here, the values of these functions are evaluated
using a numerical integration scheme. It can be shown that functions ¢,,, ¢,, and ¢s; satisfy
the following relations:

(A.zz/h)*‘.b/n :fla (All/h)*‘zs/22 =f1
Gor*dss = PLL2* (Ao /R) + 11 ¥ (Bas /M) + 0l [ (Ase /W) +11*(Bis/h)] (23)

where

fi =4 * A~ A ALK fo = 2(412* By — A2 Big) /W
fr =2(A12*Bie— A1 *Big) [l gr = C\*Chy—C1,*Cyy
Cii =(An +02Ae)h Cos = Ary+ Age) [
Cor =(Ai+Ae)lh Cio =7 Cy. (24)
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The convolution integrals appearing in eqns (23) and (24) are integrated using the trapezoid
integration rule. Here, for the purpose of illustration, the numerical integration scheme for
A, *¢", 15 presented. First, it is appropriate to express A4,,*¢, as follows (Christensen,
1982):

dé,, (A
Ay *dh, =A22(/1)¢11(0)+J Ay (A—T)—— ¢ ()

0

Consider the integration value of 4,,*¢1, from 4 = 0 to 1 = 4, to be calculated. According
to the trapezoid rule, the following numerical formulation can be obtained:

dd)n(l)

4
Ap*¢h, =1‘122(/11')fi’11(())“|‘J~ Ay (4;— A)
& Azz(%)d’n(o)

Z [Azz(l —A) + A2 (A= A D11 (s 1) — 11 (4] (25)

where 4, (k =0,1,2,...,j) (4, = 0) are the effective time intervals.

Here, the procedure of numerical calculation of ¢, is briefly illustrated. Suppose that
the values of ¢, (4) (k=0,1,2,...,7—1) have been determined. Evaluating the con-
volution integrals in eqns (23) and (24) according to the above numerical formulation (25)
generates an algebraic equation for ¢,,(4). Therefore, the value of ¢,, at effective time
A = 4, can be decided. The same procedure is repeated to calculate the value of ¢y, at time
A= 4,.,,and so on for the successive time intervals.

The in-plane displacements » and v can be determined from the following strain-force
relations:

€ =(a11Nx+a12A7y)/s+bl6’exy & =(012N+a22]\7y)/s+b26’exy’

Upon introducing stress function (16) and employing strain—displacement relations (10),
the above expressions become

U, = (alIF,yy+a12F\:xx)/S—2bl6w,xy_$(w,2x/2+w,xWO,x)
8y = (@12Fy + 020 F ) [s— 2360 — LW [2+ W, wo,,).

Integrating the above equations and performing the inversion of the Laplace transforms
yields

u(x,y, Va= — %(ctmh)z(/f2 +24,A) [)-; + &l—asin2 B sin(2amx)]

"

¢ T2 S P x (o(l'z)2 .7
~ T ol (A% +24,A) sin(20,,x) — Eﬁzw“ o T e * A sin(a,,x) cos(B,y)
(26)
1
v(x,y, )b = — —(ﬁ h (A +24,4) [b 5 b ny)jl
@B.h

T s 4 LAY S @) o S A cos(a, ) in(By) 2D

with
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_ _ a,» _ _1 ha“ . —1 [23%) _ —1 %_2_
33 =& (sa22> Y=< (sz ) sy =& <sa“) Yo =% (sz

ag G(S)'lz +a,,G(s) _2’?bl6}
hs

¢66=$w1{

(28)

¢ -t {alzG(S)+a:zzG(s)/’72_2b26/’1}

hs

The displacements in eqns (26) and (27) are determined by imposing normal in-plane
displacement u(0, y, 1) = v(x. 0, 4) = 0. It is noted that the displacements listed in eqns (26)
and (27) satisfy in-plane movement requirements along the edges x = @ and y = b. Also,
the resulting internal moments calculated from eqns (12) also meet the boundary moment
requirements. The edge shortening § along the x direction is given by

dla= —u(x = a,y,A)/a = (0,h)*(A> +2A4,A)/8 + (P/bh), . (29)

The values of functions ¢i3, Gu. Pess P77, Y1, and ¢, appearing in eqn (28) are
calculated numerically. It can be shown that these functions satisfy the following relations :
A11*¢'33 = —A, A22*¢:M = —A12¢11*¢/11 =1 ¢11*l///12 = ¢44

¢67*d)/66 =b,*Cy,— B,*C, ¢67*¢/77 = B,*C|, —b,*C%, (30)

where
by =n*B, B, =(3Bis+n"Bys)/i> B, =(Bs+3n"By) /I (31

and C,|, Cy,, Cy, Cy; and ¢, are given in eqn (24). The values of these functions at a
specific time A = A, can be determined by evaluating all the convolution integrals in eqn (30)
according to the numerical formulation (25) and following the afore-mentioned procedure.

Next, the expressions for displacements # and v, deflections w and w,, and stress
function F are substituted into the moment equation (17). The equation will not be satisfied
exactly, but will have a residual R (say) owing to the approximate nature of w. The Galerkin
method is employed here which requires

) JO

Jb r Rsin(a,,x) sin(f,y)dxdy = 0.

Substituting expression (17) into the above equation and performing the integration yields
the following nonlinear equation:

— (P[P)[D(0)~ BO)(4, + D)+ [D(A) — BOI* A+ (4o + D [¢* 24, A+ A4)1/16 = 0
(32)

where

¢=¢n+n'd., D) =[D;+2n*(Dy,+2Dg6)+n" Dy, ) /1
B(2) = n[B *(¢se) + B:*(¢77)]  Per = (&) bA’[D(0)— B(0)]. (33)
The commutative and associative laws of convolution integrals (Christensen, 1982) have

been employed to derive eqns (32) and (33). It is unlikely to solve eqn (32) exactly. The
trapezoid integration rule is employed to obtain approximate solutions for the unknown
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deflection parameter 4. Evaluating all the convolution integrals in eqns (32) and (33)
according to the numerical formulation (25) yields a cubic equation for A(4)). Therefore,
the deflection magnitude at effective time 4 = 4, can be easily determined.

Parameter P in eqn (33) represents the instantaneous buckling load which is identical
to the elastic buckling load of a laminate whose viscoelastic effect is ignored. With definitions
of P, and D(A), the edge shortening expression (29) can be rewritten as

8 = (8/a)/(ah)* = (A +24,A)/8+ (P|Pe)[D(0) — BO)Y1,. (34)

Finally, the quasi-elastic approximation for deflection amplitude 4 can be
accomplished by replacing the convolution integrals in eqns (32) and (33) with the con-
ventional products; that is

~(P[P.)[D(0)— B(O)](A, +A)+[D(A) — BAO)A+ (A, + A) A, A+ A $/16 = 0.
(33)

The material properties are calculated according to the elastic relations, for example

[Q] = [S]_l ¢|1 = 1/'pn =(A11A22—A%2)/(A22h)~

The so-called viscoelastic buckling load, based on the quasi-elastic approach and linear
classical buckling analysis, can be determined from eqn (35) by neglecting the nonlinear
terms in A and without considering the imperfection A,. The critical value designated as P,
is given by

P, =(,,)*bl*[D(2) ~ B(4)]. (36)

The ratio P,/ P, (=[D(1) — B(A)]}/[D(0) — B(0)]) is referred to as the buckling load reduction.
The controversy over the quasi-elastic analysis has been discussed in the introduction. The
validity of quasi-elastic approach will be further assessed using the viscoelastic results in
the next section.

NUMERICAL RESULTS AND DISCUSSIONS

The creep responses of glass-reinforced bis-phenol A vinyl ester (glass/BPA) laminates
are examined. The rmomentary master curves for creep compliances S; of a unidirectional
glass/BPA lamina at reference age time 7, = 70 h, measured at temperature T = 60°C, were
given by Sullivan et al. (1993). Here, a three-parameter model is employed to describe §;
as follows:

log(S,/J,) = b,+c,llog(t/t+ D]% J, = 1/GPa 1, =15

b“ = "103 b22 = —‘0881 b66 = ‘—0430
¢iy = 0.000532  ¢,, =0.000277 c¢46 = 0.000344
d“ - 2.98 dzz = 388 d()é = 391 (37)

where (log) is the common logarithm. The aging shift rate for S,;, 55, and S is
u=0.75.

Sullivan et af. did not report the compliance data for S,,. Here, a time-invariant Poisson’s
ratio v, = 0.3 is assumed for this lamina ; that is
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812 = —0.38,, (38)

and the aging shift rate for component S, is also taken to be 0.75. The reduced relaxation
moduli Q,; are related to S; by eqns (6). The values of Q;; can be determined by invoking
the numerical integration scheme (25). ‘

The creep deflections and edge shortenings of cross-ply and angle-ply glass/BPA
laminates, predicted based on the viscoelastic analysis and quasi-elastic approximation, are
presented below. The effects of the physical aging, the pre-loading aging time, the amplitude
of initial imperfection, the magnitude of loading, and the number of layers on the viscoelastic
behaviors of laminates are demonstrated in the numerical examples. Since the aging shift
rate is identical for each component of compliances, the analyses are conducted on the
effective time scale. Once the problem is solved, the results are then transformed back on
the real time scale according to eqn (4). The results presented in this paper are on the real
time scale. The laminates considered hereafter have a buckling mode parameter n = 1. The
laminates are aged and operating in an environment with temperature 7 = 60°C. The pre-
loading aging time of the lamirates is #, = 70 h, unless special values are indicated elsewhere.
The numerical integration for the convolution integrals is based on the equal effective time
step.

Creep responses of eight-layer symmetric cross-ply laminates [(0°/90°),],

First, the convergence of numerical results is studied. Consider a laminate with imper-
fection A, = 0.001 under a compressive loading P/P. = 0.8. The predicted deflections
according to various effective time steps Al = 62,500, 12,500, 2500 and 500 s are plotted
against real time in Fig. 2. It is noted that the convergence rate is fast; the solutions
corresponding to A4 = 2500 and 500 s are almost identical. The convergence of all the cases
presented hereafter has been thoroughly examined.

Next, consider a laminate with A4, = 0.01 subjected to a compressive loading
P/P_ = 0.6. The deflection histories based on the viscoelastic analysis are shown in Fig. 3.
The momentary creep results, obtained by ignoring the physical aging effect, are also
included in this figure for comparison. It is seen that the momentary creep deflection
deviates sharply from the long-term creep deflection when the time duration exceeds
approximately the pre-loading aging time (¢, = 70 h). Therefore, the creep deflection of an
aging material in a long-term service will be overestimated if the physical aging effect is
overlooked.

0.6 —
1 AA: effective time steps
7 (seconds)
@ 0.5 | 5)=62500 - - >
T 1 81=12500 — -
I<C . .
c 0.4 _— AA= 2500 - - /./-/
:g 7 A.lz '/‘
8] B 4
] . ’
= 0.3 a
) 1 .
o | R
S 1
o 0.2
= ]
0.1
00¥/T11||111111x|11‘1

{
50 100 150 200

Time after loading t (hours)

Fig. 2. Deflection histories of a cross-ply laminate according to various effective time steps:
(P/P, =0.8,4,=0.001,5=10,1="70h).
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Fig. 3. Momentary and long-term creep deflection histories of a cross-ply laminate: (P/P,, = 0.6,
Ay =001,1=1.0,1, = 70 h).
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Fig. 4. Deflection histories of cross-ply laminates with various values of pre-loading aging time:
(P[P, =08,4,=0.01,n =1.0).

Figure 4 depicts the deflection histories of the laminates with 4, = 0.01 and P/P,, = 0.8,
having various values of pre-loading aging time ¢ = 7, 70 and 700 h. First, the compliance
data listed in eqns (37) and (38) need to be shifted by following the time/aging time
superposition principle [eqn (2)]. The results shown in Fig. 4 are based on the viscoelastic
analysis. It is noted that a laminate creeps much slower when subjected to a longer period
of aging. The results are as expected, since physical aging will reduce the mobility of chain
segment and slow down the process of creep.

The deflection histories of laminates under a compressive force P/P, = 0.8, having
various amplitudes of initial imperfection 4, = 0.1, 0.01, 0.001 and 0.0001, are shown in
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Fig. 5. Deflection histories of cross-ply laminates with various amplitudes of initial imperfection :
(P/P,=0.8,n=1.0,t,=70h).
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Fig. 5. Results based on both viscoelastic analysis and quasi-elastic analysis are shown in
this figure. For a laminate with a large initial deflection, for example 4, = 0.1, the quasi-
elastic solutions are in good agreement with the viscoelastic solutions. An explanation for
this phenomenon is given below. Note from Fig. 5 that the instantaneous deflection of the
laminate with 4, = 0.1 is very large, which in turn will induce large values of instantaneous
stress resultants. Since the creep behavior of the polymer matrix composites is dominated
by the primary stage, it is seen that the laminate creeps rapidly from the onset of the
loading, but gradually flattens out. Therefore, most of the changes in stress resultants take
place on the very early stage of time duration, which implies that the variation of the stress
resultants is moderate. Consequently, the quasi-elastic approximation is applicable to the
case when a laminate has a large amplitude of imperfection. However, the deviations
between the quasi-elastic and viscoelastic solutions become larger for the cases of laminates
having smaller imperfections. The quasi-¢lastic approach generally predicts a faster growth
in creep deflection. For these cases, the instantaneous deflection is seen to be relatively
small, which implies that the induced resultant moments are also small at the beginning of
the loading. Because the viscoelastic model follows the hereditary law and respects the
history of the loading, therefore, the laminate will creep very slowly. Nonetheless, the quasi-
elastic model takes the current values of stress resultants to be the constant loads for the
whole loading history ; consequently, the creep deflection response to the loading predicted
by the quasi-elastic analysis is greatly exaggerated.

A further examination of Fig. 5 reveals that for a laminate with a small imperfection,
the quasi-elastic analysis predicts a buckling phenomenon occurring at a time approximately
11 h after the load is applied. In other words, the viscoelastic buckling load (P,) reduces to
the 85% of the instantaneous buckling load (P,) when the laminate sustains a loading for
approximately 11 h. However, the more realistic viscoelastic analysis indicates that the
laminate undergoes a gradual transition from the regime of small deflection to the regime
of large deflection. The transition is not rapid enough to be characterized as a buckling
phenomenon. Also, according to the viscoelastic analysis, the deflection history is strongly
influenced by the amplitudes of initial imperfection. For example, for a laminate with very
small amplitude of imperfection (4, = 0.0001), the laminate sustains a loading duration of
100 hours without yielding a significant deflection. Based on the above observations, the
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Fig. 6. Edge shortenings of cross-ply laminates with various amplitudes of initial imperfection :
(P/P,=08,n=1.0,1,=T70h).

validity of viscoelastic buckling predicted using the quasi-elastic approach is seen to be
questionable.

Figure 6 shows the edge shortenings of the same laminates considered in the afore-
mentioned example (P/P, = 0.8). Results based on both analyses are shown in the figure
for comparison. Again, it is noted that the quasi-elastic analysis is applicable to the cases
when laminates have a large imperfection. However, the quasi-elastic approximation cannot
produce adequately accurate results of edge shortening for laminates having small imper-
fections.

Figure 7 shows the deflection histories of a perfect laminate and a laminate with
imperfection 4, = 0.1, both under a compressive force P/P,, = 1.05. Results based on the
viscoelastic and quasi-elastic analyses are presented. For both two cases with the com-
pressive load exceeding the instantaneous buckling load P, the instantaneous deflections
are very large, and the quasi-elastic analysis predicts deflection histories which are very
close to those based on the viscoelastic analysis. The nature of the deflection history is
similar to the case of a laminate with a large imperfection 4, = 0.1 under P/P., = 0.8 as
depicted in Fig. 5. It is also seen that the quasi-elastic solutions for the imperfect laminate,
which has a larger instantaneous deflection than a perfect laminate, are almost identical to
the viscoelastic solutions.

The deflection histories of laminates with imperfection 4, = 0.01, under various load-
ings P/P_, = 0.8,0.7, 0.6 and 0.5, are shown in Fig. 8. The real time coordinate (abscissa)
is plotted on the log scale. It is noted that the deflection history is strongly sensitive to the
magnitude of loading. The creep rate of deflection for a laminate under a smaller loading
is much slower than the creep rate of the same laminate subjected to a larger loading. For
a laminate under P/P. = 0.6, it takes more than 100,000 h for the laminate to yield a
deflection with an amplitude 4 = 0.8 ; meanwhile, for the same laminate under P/P_ = 0.8,
the laminate creeps to the same magnitude of deflection within 400 h of loading.

Creep deflections of untisymmetric angle-ply laminates (—45°(45%)y,,:

The deflection histories of eight-layer (N = 8) laminates under P/P. = 0.8, having
various degrees of initial deflection 4, = 0.1, 0.01 and 0.0001, are plotted against time
duration in Fig. 9. Results based on both viscoelastic and quasi-elastic analyses are reported.
For a laminate with a large imperfection (4, = 0.1), the quasi-elastic approximation gives



Viscoelastic analysis of creep response 1529

1.0
|<® 0.8
+ i
I< ]
g -
= 0.6
13} B
R ]
3
;5_, 0.4 ]
2 1 Viscoel. analysis —
i Quasi—el. analysis - -
0.2
0-0 ll]!lT_fll[TllllTIIIIIIIT]TIIT
0 2 4 6 8 10 12

Time after loading t (hours)

Fig. 7. Deflection histories of cross-ply laminates carrying a load larger than the instantaneous
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Fig. 8. Deflection histories of cross-ply laminates with various magnitudes of loading:
(4, =0.01,n = 1.0,z, = 70 h).

the results which are very close to the viscoelastic solutions. However, large discrepancies
between results based on different approaches are observed for laminates with small imper-
fections. The quasi-elastic analysis predicts a critical time for buckling at approximately 22
h after loading, which is unlikely to be true as compared to the results based on the more
realistic viscoelastic analysis.

Figure 10 depicts the deflection histories of antisymmetric laminates with 4, = 0.01
and P/P. = 0.8. The laminates considered have an identical thickness, but consist of
different numbers of layers N = 2, 4, & and oo. The extensional and bending relaxation
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Fig. 10. Deflection histories of angle-ply laminates with various numbers of layers: (P/P, = 0.8,
A, =0.01,n =1.0,t, = 70 h).

moduli 4;and D;; are identical for laminates having various numbers of layers. Meanwhile,
the values of coupling relaxation moduli B,, and B, are inversely proportional to the layer
number. Letting B, and B, be equal to zero represents a laminate having an infinite
number of layers (N = oo). It is noted from Fig. 10 that the creep deflection is more
significant for a laminate with a small number of layers. In other words, the existence of
the coupling relaxation moduli not only reduces the rigidity against instantaneous buckling
(Tauchert, 1987), but also makes the laminates more vulnerable to the creep. The influence
of the layer number on the creep deflection diminishes very rapidly as layer number
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increases. The creep deflections corresponding to an eight-layer laminate are almost ident-
ical to the creep deflections of a laminate assumed to be consisted of an infinite number of
layers. Therefore, it is possible to analyze the viscoelastic responses of regular, anti-
symmetric laminates having a large number of layers by neglecting the coupling relaxation
moduli. This simplification will provide a great advantage for the analysis since the laminate
is treated to be an orthotropi¢ plate.

CONCLUDING REMARKS

The geometrically nonlinear analysis of creep responses for cross-ply and angle-ply
composite laminates under in-plane compression has been conducted using the viscoelastic
approach. The influence of physical aging effect on the viscoelastic behaviors of laminates
is also considered. The effective time theory is employed to construct the stress—strain
relation for each lamina. Consider the case that every component of creep compliances in
each lamina has an identical aging shift rate, the analysis is conducted on the effective time
scale. The resulting solutions are then transformed back on the real time scale. The structural
responses are governed by the compatibility equation and moment equilibrium equation.
The Laplace transform of the stress function can be obtained from the compatibility
equation using the Laplace transform. The inverse Laplace transform of the stress function
is accomplished by using the numerical integrations. The moment equilibrium condition is
approximately satisfied by invoking the Galerkin method ; the resulting equation is solved
by the trapezoid integration rule. The creep responses of glass-reinforced bis-phenol A vinyl
ester (glass/BPA) laminates are reported. The results based on the quasi-elastic analysis are
also included for comparison. Based on the numerical examples, it can be concluded that:

(1) The effect of viscoelastic properties of glass/BPA on the creep responses is seen to
be significant. Several examples indicate that creep deflections can reach a magnitude in
the order of thickness within a few days of loading.

(2) The influence of physical aging effect is very important for a laminate under a long
period of compression. The neglect of aging effect results in overestimating the creep
responses.

(3) For the material considered in this study, the pre-loading aging, although does
not affect the instantaneous structural responses, will slow down the creep process.

(4) For both cases when the compressive loading exceeds the instantaneous buckling
load and when laminates have a large amplitude of imperfection, a large instantaneous
deflection occurs once loading is applied. Consequently, the history of stress resultant
variation bears a resemblance to a constant step loading. The results based on the much
simpler quasi-elastic analysis agrees well with the viscoelastic solutions.

(5) For the case of laminates having small imperfections and under a loading smaller
than the instantaneous buckling load, there is a large discrepancy between quasi-elastic
and viscoelastic solutions. Generally, the quasi-elastic analysis predicts a faster growth in
deflection. The quasi-elastic analysis also reveals a critical time at which a discernible
buckling occurs. Nevertheless, it is unlikely to be true according to the more realistic
viscoelastic analysis. The crecp deflection history depends strongly on the magnitudes of
imperfections. For a laminate with an extremely small imperfection, the laminate yields
significant deflections only after a very long period of loading. Also, a gradual transition
of deflection from the regime of small deflection to the large-deflection regime is observed ;
the transition is not drastic enough to be characterized as a buckling.

(6) The creep deflection history is seen to be very sensitive to the magnitude of loading.
The deflection creeps much slower for a laminate under a smaller loading.

(7) A preliminary study on antisymmetric laminates shows that the existence of the
coupling relaxation moduli can make the laminate more susceptible to the creep.

Finally, it needs to mention that the current analyses is restricted to the material systems
whose aging shift rates y,; corresponding to each component of the creep compliances have
an identical value. For the materials with p,, # ue as reported by Gates and Feldman
{(1995), the present stress function approach in conjunction with the Laplace transform can
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not apply. This is because the relationships between the stress resultants and strains involve
two effective time scales 4,; and Ag, which makes it impossible to perform the Laplace
transform. Different approaches are required for this type of materials. For example,
approximating all the displacements using series of functions and applying the Galerkin
method or the principle of virtual work gives a set of equations containing convolution
integrals. The resulting equations are then solved for the displacement parameters using
the numerical integration scheme.
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